Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sylvain Burger, Bruno Therrien and Georg Süss-Fink*

Institut de Chimie, Université de Neuchâtel, Case postale 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail:
georg.suess-fink@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.051$
$w R$ factor $=0.126$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(Diphenylphosphinoyl)benzoic acid chloroform solvate

In the solid state, 2-(diphenylphosphinoyl)benzoic acid, $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{P}(\mathrm{O}) \mathrm{PPh}_{2}$, forms a hydrogen-bonded dimer between the phosphoryl O atom and the $\mathrm{O}-\mathrm{H}$ group of the benzoic acid moiety, while the O atom of the carbonyl group is involved in an intramolecular contact with the P atom. The molecule exists as the chloroform solvate, $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P} \cdot \mathrm{CHCl}_{3}$.

Comment

Commercially available 2-(diphenylphosphino)benzoic acid has been recently used as a building block for the synthesis of more complex ligands (Wrobleski et al., 1984; Correia et al., 2001; Trost et al., 2002; Burger et al., 2003). The phosphine oxide derivative, $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{P}(\mathrm{O}) \mathrm{PPh}_{2}$, was obtained in moderate yield by addition of hydrogen peroxide to a methanol solution containing 2-(diphenylphosphino)benzoic acid (Chandrasekaran et al., 2001). Unlike Chandrasekaran et al., who obtained crystals of the acid by slow evaporation of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-heptane solution, we obtained crystals of the title solvate, (I), suitable for X-ray analysis, by slow evaporation of a chloroform solution. The presence of chloroform molecules in the crystal generates a completely different mode of packing.

(I)

Compound (I) crystallizes with two independent molecules of the acid per asymmetric unit. Fig. 1 shows only one of these independent molecules, and significant bond lengths and angles are given in Table 1. The P atom is in a pseudo-trigonal bipyramidal geometry, the phosphoryl O atom being involved in an intramolecular contact with the O atom of the carbonyl group of the acid function, with $\mathrm{P} 1 \cdots \mathrm{O} 4=2.973$ (3) \AA and $\mathrm{P} 2 \cdots \mathrm{O} 6=2.966(3) \AA$. A similar axial coordination has been observed for $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}\right) \mathrm{P}(\mathrm{O}) \mathrm{PPh}_{2}$ (Chandrasekaran et al., 2001) and the related compounds $\left[\mathrm{Et}_{2} \mathrm{NH}_{2}\right]\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right)\right.$ $\mathrm{P}(\mathrm{O}) \mathrm{PPh}_{2}$] (Chandrasekaran et al., 2002) and $\left[\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{2} \mathrm{OH}\right)_{3}\right]\left[\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2}\right) \mathrm{P}(\mathrm{O}) \mathrm{PPh}_{2}\right]$ (Chandrasekaran et al., 2003).

In (I) in the solid state, each independent molecule of the acid exists as a dimer, due to the presence of hydrogen bonds between the phosphoryl O atom and the $\mathrm{O}-\mathrm{H}$ group of the benzoic acid moiety (Fig. 2 and Table 2). The $\mathrm{O} \cdots \mathrm{O}$ distances

Received 6 August 2003 Accepted 14 August 2003 Online 23 August 2003

Figure 1
The molecular structure of one independent molecule of 2-(diphenylphosphinoyl)benzoic acid (Farrugia, 1997). H atoms and chloroform molecules have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Dimeric structure of (I), showing the intermolecular hydrogen bonds. (Anger et al., 1991)
are 2.578 (3) and 2.566 (4) \AA, with the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles both 166°. The distances observed between the two P atoms of the dimers are 6.904 (2) and 6.995 (2) \AA, respectively. The chloroform molecules in (I) participate in the hydrogenbonding network (Table 2). The $\mathrm{C}-\mathrm{H}$ group of one independent molecule of chloroform interacts weakly with the carbonyl O atom of one independent molecule of acid, i.e. atom H 40 with atom $\mathrm{O} 4^{\mathrm{ii}}$ and atom H 41 with atom O^{i} (see Table 2).

Experimental

Compound (I) was prepared according to the literature method of Chandrasekaran et al. (2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P} \cdot \mathrm{CHCl}_{3}$	$Z=4$
$M_{r}=441.65$	$D_{x}=1.477 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.6828(9) \AA$	Cell parameters from 8000
$b=13.3850(14) \AA$	\quad reflections
$c=17.8678(18) \AA$	$\theta=2.0-25.9^{\circ}$
$\alpha=91.572(12)^{\circ}$	$\mu=0.56 \mathrm{~mm}^{-1}$
$\beta=98.950(12)^{\circ}$	$T=153(2) \mathrm{K}$
$\gamma=104.045(12)^{\circ}$	Plate, colourless
$V=1985.4(4) \AA^{\circ}$	$0.53 \times 0.30 \times 0.12 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer
φ oscillation scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.884, T_{\text {max }}=0.935$
15762 measured reflections
7227 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.127$
$S=0.97$
7227 reflections
487 parameters

4039 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-16 \rightarrow 16$
$l=-21 \rightarrow 21$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C1-P1	$1.816(4)$	C27-O6	$1.210(4)$
C7-O4	$1.218(4)$	C27-O5	$1.317(4)$
C7-O3	$1.311(4)$	C28-P2	$1.801(4)$
C8-P1	$1.803(3)$	C34-P2	$1.809(4)$
C14-P1	$1.806(4)$	O1-P1	$1.490(3)$
C21-P2	$1.822(4)$	O2-P2	$1.493(3)$
O1-P1-C8	$114.21(16)$	O2-P2-C28	$115.51(17)$
O1-P1-C14	$108.38(16)$	O2-P2-C34	$108.77(15)$
C8-P1-C14	$106.24(17)$	C28-P2-C34	$106.35(18)$
O1-P1-C1	$113.43(16)$	O2-P2-C21	$115.03(17)$
C8-P1-C1	$106.94(16)$	C28-P2-C21	$105.25(17)$
C14-P1-C1	$107.20(17)$	C34-P2-C21	$105.13(16)$

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2{ }^{\text {i }}$	1.06	1.54	2.578 (3)	166
C41-H41 . ${ }^{\text {O }} 6^{\text {i }}$	0.98	2.29	3.255 (5)	170
$\mathrm{C} 40-\mathrm{H} 40 \cdots \mathrm{O} 4^{\text {ii }}$	0.98	2.55	3.355 (5)	139
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {iii }}$	1.03	1.56	2.566 (4)	166

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $1-x, 1-y,-z$; (iii) $1-x,-y,-z$.
The H atoms of the acid functions were located in a difference Fourier map and their positions fixed, while the remaining H atoms were included in calculated positions and treated as riding atoms $\left(\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}=1.5 U_{\text {eq }}$ of the parent atom)

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No 20-61227-00). We thank Professor H. Stoeckli-Evans for free access to X-ray facilities.

References

Anger, S., Bayer, D., Cason, C., Dayley, C., Demlow, S., Enzmann, A., Farmer, D., Wegner, T. \& Young, C. (1991). POV-Ray Software. Version 3.1. Persistence of Vision Development Team, Indianapolis, USA.

organic papers

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Burger, S., Therrien, B. \& Süss-Fink, G. (2003). Eur. J. Inorg. Chem. 19, 30993103.

Chandrasekaran, A., Day, R. O. \& Holmes, R. R. (2001). Inorg. Chem. 40, 6229-6238.
Chandrasekaran, A., Day, R. O. \& Holmes, R. R. (2002). Inorg. Chem. 41, 1645-1651.
Chandrasekaran, A., Timosheva, N. V., Day, R. O. \& Holmes, R. R. (2003). Inorg. Chem. 42, 3285-3292.

Correia, J. D. G., Domingos, Â., Santos, I. \& Spies, H. (2001). J. Chem. Soc. Dalton Trans. pp. 2245-2250.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2000). IPDS Software. Stoe \&Cie GmbH, Darmstadt, Germany. Trost, B. M., Pan, Z., Zambrano, J. \& Kujat, C. (2002). Angew. Chem. Int. Ed. 41, 4691-4693; Angew. Chem. (2002), 114, 4885-4887.
Wrobleski, D. A., Rauchfuss, T. B., Rheingold, A. L. \& Lewis, K. A. (1984). Inorg. Chem. 23, 3124-3129.

